Controlling Machines with Smalltalk on Raspberry Pi

ESUG 2016
Georg Heeg eK
Georg Heeg & Karsten Kusche
Motivation
Mundartenstation
(Station of German Dialects)

• Button to start / stop playback
• LED to indicate playback
• MP3 support
• configuration via CSV-Files
Raspberry Pi
900Mhz Quad-Core ARMv7 @ 1GB RAM

26 GPIOs + Power + Ground
Matrix Circuit

- How to connect 84 Buttons and LEDs to 27 GPIOs?
- 84 Buttons = 7 rows x 12 cols

- \(\text{X} \) = on
- \(\text{X} \) = off
- \(\text{X} \) = in
- \(\text{X} \) = out
Matrix Circuit

- How to connect 84 Buttons and LEDs to 27 GPIOs?
- 84 Buttons = 7 rows x 12 cols
- ![Diagram of matrix circuit]
 - X = on
 - X = off
 - X = in
 - X = out
Matrix Circuit

• How to connect 84 Buttons and LEDs to 27 GPIOs?
• 84 Buttons = 7 rows x 12 cols
• \(\text{□} = \text{on} \)
• \(\text{□} = \text{off} \)
• \(\text{□} = \text{in} \)
• \(\text{□} = \text{out} \)
Matrix Circuit

- How to connect 84 Buttons and LEDs to 27 GPIOs?

- 84 Buttons = 7 rows x 12 cols

- on
- off
- in
- out
Matrix Circuit

• How to connect 84 Buttons and LEDs to 27 GPIOs?

• 84 Buttons = 7 rows x 12 cols

• On
• Off
• In
• Out

r1
r2
r3
r4

c1 c2 c3 c4
Matrix Circuit

- How to connect 84 Buttons and LEDs to 27 GPIOs?
- 84 Buttons = 7 rows x 12 cols
- \times = on
- \Box = off
- \Box = in
- \Box = out
Matrix Circuit

- How to connect 84 Buttons and LEDs to 27 GPIOs?
- 84 Buttons = 7 rows x 12 cols

- \(\text{X} \) = on
- \(\text{X} \) = off
- \(\text{X} \) = in
- \(\text{X} \) = out
Matrix Circuit

• How to connect 84 Buttons and LEDs to 27 GPIOs?
• 84 Buttons = 7 rows x 12 cols
 • \(\boxdot \) = on
 • \(\square \) = off
 • \(\dashbox \) = in
 • \(\square \) = out
LED Matrix Circuit

• How to connect 84 Buttons and LEDs to 27 GPIOs?

• 84 Buttons = 7 rows x 12 cols

• \(x \) = on

• \(x \) = off

• \(x \) = in

• \(x \) = out
Hardware Assembly
Hardware Assembly
GPIO Access

- sysfs in Kernel via /sys/class/gpio
How to program the Raspberry Pi?

- Cincom® is Cosponsor of Erlebniswelt Deutsche Sprache
- Initial Port of VisualWorks® VM within 5 Days
VisualWorks

Sound System

Matrix Button System

4@2

on

off

GPIO

GPIO

GPIO
VisualWorks

Sound System

LED Sound System

Matrix Button System

Matrix LED System

4@2

on

off

GPIO

GPIO

GPIO

GPIO
Sound System

1. Wait for Any Button-Press
2. Play Track
3. Wait for Button-Release
4. Wait for End of Track or Same Button-Press
5. Wait for Button-Release
6. Repeat
Testing on Windows

Sound System

Matrix Button System

GPIO

GPIO

GPIO

Dummy Objects
Developer Tools
Developer Tools

<table>
<thead>
<tr>
<th>Pin</th>
<th>GPIO</th>
<th>Description</th>
<th>I/O Type</th>
<th>Pin</th>
<th>GPIO</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>GPO16</td>
<td></td>
<td>in</td>
<td>23</td>
<td>GPO11</td>
<td>(SPI_CLK)</td>
</tr>
<tr>
<td>20</td>
<td>GPO15</td>
<td></td>
<td>in</td>
<td>10</td>
<td>GPO14</td>
<td>(TXD0)</td>
</tr>
<tr>
<td>5</td>
<td>GPO12</td>
<td></td>
<td>in</td>
<td>33</td>
<td>GPO13</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GPO08</td>
<td>(SPI_CE0_N)</td>
<td>out</td>
<td>21</td>
<td>GPO09</td>
<td>(SPI_MISO)</td>
</tr>
<tr>
<td>19</td>
<td>GPO10</td>
<td>(SPI_MOSI)</td>
<td>out</td>
<td>23</td>
<td>GPO11</td>
<td>(SPI_CLK)</td>
</tr>
<tr>
<td>32</td>
<td>GPO012</td>
<td></td>
<td>out</td>
<td>33</td>
<td>GPO13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>GPO14</td>
<td>(TXD0)</td>
<td>in</td>
<td>10</td>
<td>GPO15</td>
<td>(RXD0)</td>
</tr>
<tr>
<td>36</td>
<td>GPO16</td>
<td></td>
<td>in</td>
<td>11</td>
<td>GPO17</td>
<td>(GPIO_GEN0)</td>
</tr>
<tr>
<td>12</td>
<td>GPO18</td>
<td>(GPIO_GEN1)</td>
<td>in</td>
<td>35</td>
<td>GPO19</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>GPO20</td>
<td></td>
<td>in</td>
<td>40</td>
<td>GPO21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>GPO22</td>
<td>(GPIO_GEN3)</td>
<td>out</td>
<td>16</td>
<td>GPO23</td>
<td>(GPIO_GEN4)</td>
</tr>
<tr>
<td>18</td>
<td>GPO24</td>
<td>(GPIO_GEN5)</td>
<td>out</td>
<td>22</td>
<td>GPO25</td>
<td>(GPIO_GEN6)</td>
</tr>
</tbody>
</table>
Home Automation

the Heeg way
Kitchen Lift
The Lift

Motor with Windlass
Top Contact
Door Contact 1
Controls
Door Contact 2
Bottom Contact

🍵🍺
Connecting 220V

- Relays to switch via GPIO
- Contactor to switch Motor
- Relay switches Contactor
Hardware Assembly
Hardware Assembly
Hardware Assembly
Hardware Assembly
Software Model

Motor Control

Lift

GPIO

Relay Array

Conductor Array

Single-Phase AC Motor

GPIO

Trigger Button

Sensor Button

up/down

stop
5 Software Rules

- Door open \iff Stop
- Driving Up \land Top Contact \iff Stop
- Driving Down \land Bottom Contact \iff Stop
- \neg Driving \land \neg Bottom Contact \land Control Down \implies Drive Down
- \neg Driving \land \neg Top Contact \land Control Up \implies Drive Up
Demo

- Controlling the Lift from a Workspace
- Using Model Objects for Buttons
LiftApplication is used to control the lift.

Usage

```plaintext
self openForSimulation
```

Instance Variables:

```plaintext
lift <Lift>
```
Maintenance

- X11 via SSH
- basically unnecessary
- runs since October
- daily use
Beaglebone Black
Virtualization Layer

Matrix Button System

vGPIO1
vGPIO2
vGPIO3

GPIO1
GPIO2
GPIO3
Availability

- 32bit Linux ARM VM
 - available since August 19th, 2016
 - through Cincom Smalltalk Developer Program
- Smalltalk GPIO Access
 - to be determined
Summary

Connecting Hardware to Smalltalk was never more fun